Modelling of light driven CO2 concentration gradient and photosynthetic carbon assimilation flux distribution at the chloroplast level

نویسنده

  • M. Jouravlev
چکیده

The steady state of the two-substance model of light driven carbon turnover for the photosynthetic CO2 assimilation rate is presented. The model is based on the nonlinear diffusion equation for a single chloroplast in the elliptical geometry by assuming light driven Ribulose-1,5-bisphosphate (RuBP) regeneration and CO2 assimilation reaction of carboxilation coupled with the photosynthetic sink strength. The detailed analysis of 3 -dimensional CO2 concentration and flux on the chloroplast level is made. It is shown that under intense light irradiation there exists a boundary layer of chloroplasts with a high value of CO2 assimilation flux. The presented simplified model can be used for the calculations and experimental estimations of the CO2 assimilation rate for environmental applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Photorespiration plays an important role in the regulation of photosynthetic electron flow under fluctuating light in tobacco plants grown under full sunlight

Plants usually experience dynamic fluctuations of light intensities under natural conditions. However, the responses of mesophyll conductance, CO2 assimilation, and photorespiration to light fluctuation are not well understood. To address this question, we measured photosynthetic parameters of gas exchange and chlorophyll fluorescence in tobacco leaves at 2-min intervals while irradiance levels...

متن کامل

Sun leaves up-regulate the photorespiratory pathway to maintain a high rate of CO2 assimilation in tobacco

The greater rate of CO2 assimilation (A n) in sun-grown tobacco leaves leads to lower intercellular and chloroplast CO2 concentrations and, thus, a higher rate of oxygenation of ribulose-1,5-bisphosphate (RuBP) than in shade-grown leaves. Impairment of the photorespiratory pathway suppresses photosynthetic CO2 assimilation. Here, we hypothesized that sun leaves can up-regulate photorespiratory ...

متن کامل

In situ photosynthetic responses to light, temperature and carbon dioxide in herbaceous plants from low and high altitude

Net CO2 assimilation (A) was analysed in situ in 12 pairs of altitudinally separated, herbaceous plant species in the Austrian Alps at 600 and 2600m. Both groups of species show a similar average response to light, saturating at quantum flux densities (400-700mm) (QFD) of more than 1200 VLmol m-2 sol. Temperature optimum of QFD-saturated A differs little (3K) and corresponds to the median of ai...

متن کامل

Relationship between photosynthetic electron transport and pH gradient across the thylakoid membrane in intact leaves.

Under conditions (0.2% CO2; 1% O2) that allow high rates of photosynthesis, chlorophyll fluorescence was measured simultaneously with carbon assimilation at various light intensities in spinach (Spinacia oleracea) leaves. Using a stoichiometry of 3 ATP/CO2 and the known relationship between ATP synthesis rate and driving force (Delta pH), we calculated the light-dependent pH gradient (Delta pH)...

متن کامل

Studies on photosynthetic processes. I. The effect of light intensity on triphosphopyridine nucleotide reduction, adenosine triphosphate formation, and carbon dioxide assimilation in spinach chloroplasts.

Although there is a considerable amount of information on the effect of light intensity on O2 evolution and, to a lesser extent, COz assimilation in intact plants (l), there are few reports on the effect of light intensity on the photosynthetic processes known to occur in the isolated chloroplast and chloroplast fragments. Isolated chloroplasts have the ability to assimilate CO2 (‘2, 3), and ch...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012